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Traditional colour imaging uses three broad bands of colour (red, green and blue), 
known as RGB imaging and is designed for our human perception. However, RGB 
imaging has limited spectral resolution and so cannot differentiate between samples 
with a very similar colour. For example, chlorophyll a and chlorophyll b are difficult to 
separate using RGB data. They are both simply green. 

Multispectral imaging uses precise reflectance data at multiple wavelength bands 
over a spectral range. They are a stack of many images showing the percentage 
light reflectance at many colours along a range that is wider than human visual 
perception. Multispectral images are far more data-rich than RGB images and we can 
apply multivariate statistical methods originally developed for satellite image analysis 
to reveal high-dimensional patterns that would not be ‘seen’ otherwise.

The VideometerLab 3 is a bench-top multispectral imaging system from the Danish 
company Videometer A/S. It uses selected wavelengths of precisely controlled 
illumination with high-intensity light emitting diodes (LEDs) at 19 intervals between 
375-970 nm (ultraviolet, visual and infrared light). A high-resolution monochrome 
CCD camera (2056 x 2056 pixels, 45 µm x 45 µm area per pixel) records an image 
at each LED illumination wavelength. An optional filter wheel adds the ability to 
separate fluorescence emission (by excitation at each LED wavelength) from overall 
reflectance of a sample, though this option was not used in this study and models 
were built on calibrated reflectance data only.

Samples are simply placed in the target area (slightly larger than a petri dish) and 
image acquisition is started. The integrating sphere descends to enclose the sample 
and eliminate interference from ambient light. The LEDs strobe in sequence for 
precisely-controlled time periods and a monochrome reflectance image is captured 
at each of the 19 illumination wavelengths (plus up to 27 more fluorescence-only 
images if the filter wheel is used). Full control over the light conditions inside the 
sphere allows us to optimise signal to noise at every LED wavelength separately, 
unlike a panchromatic light source such as halogen bulb, and use the full dynamic 
range of the camera at each of those wavelengths.

The 19 monochrome images are combined into a single 5 megapixel multispectral 
image datacube; every pixel in the image has a calibrated 19 data-point UV-Vis-IR 
reflectance spectrum for a 45 µm x 45 µm area of the sample. Image acquisition 
takes about 5 seconds and analysis models can be run from a pre-saved menu, 

meaning analysis results are available within 10-15 seconds (including sample 
handling time).

Illumination settings and image analysis recipes for particular sample types can 
be saved and run as standard procedures by technicians for fast, semi-automated 
analysis. Multiple parameters can be checked simultaneously by running different 
analysis models on the same image datacube. Image data is easily stored for later use 
in developing new analysis models. High throughput non-destructive image analysis 
of products and ingredients can be made a routine part of a testing regime without 
sacrificing the ability to run further destructive testing on the same samples.

Multispectral imaging is well suited to grain and seed analysis compared to 
traditional spectroscopy techniques. Even closely related variants, like Triticum 
aestivum (common or bread wheat) and Triticum durum (durum or macaroni 
wheat) grains, will have differences in their spectral response signatures. But these 
differences are hidden if we measure the overall average spectrum of a grain mixture 
with conventional NIR – if a grain sample is adulterated at a relatively low level, the 
tell-tale signal of an adulterant may be missed. 

A multispectral image will reveal the spatially separated grain varieties as being 
different to one another. A grain sample with low level adulteration may be imaged 
to see where the adulterant grains are based on their separate spectral signature. 
This is not an average of many grains but is looking at each grain individually to 
decide if it is the correct variant or not, thus giving much more detailed information 
on the sample.

Developing a MSI Model for Wheat 
Authenticity Testing
The VideometerLab 3 system was used to distinguish between specifi c varieties of Triticum 
aestivum and Triticum durum wheat grains based on the spectral signature of each 
grain type. Once the software has ‘learned’ the unique spectral signature of each 
grain type, it can then score a particular wheat grain as being more likely to be T. 
durum or T. aestivum

Control samples of T. aestivum and T. durum were used to train a software model 
to distinguish T. durum from T. aestivum, which was then applied to blind samples 
to test the level of adulteration. The control samples and blind test panel were 
prepared using wheat grains from two authenticated wheat cultivars of T. durum 
and T. aestivum sourced and provided by Frontier Agriculture Ltd (Diss, Norfolk, UK). 
Full results for this test panel are available in the project whitepaper available from 
Analytik and LGC, and published in the Defra report FA0136 ‘Feasibility study for 
using rapid and automated spectral imaging for food authenticity testing’.

Pixels of T. durum and T. aestivum wheat grains are highlighted to teach the software 
the average spectral signature of each grain type (Figure 3 and 4). Statistical analysis 
of the spectral information collected from the few-thousand training set pixels 
gives us data on the mean and standard deviation of reflectance at 19 wavelengths 
for each training set; the combined pattern of results for each set can be called a 
spectral signature. 

The software builds a statistical discrimination model to assess any other given 
pixel-spectrum on whether it is more like the T. durum spectral signature or the T. 
aestivum spectral signature and assigns a score between +2 and -2 to each pixel 
based on its degree of spectral similarity to the T. durum or the T. aestivum spectral 
signature. 

A false-colour scheme is applied to visually highlight the spatial variation; red pixels 
have a positive score because their spectrum is like the T. durum spectral signature 

Multispectral imaging is a rapid and non-destructive approach to assess quality in a wide range of products and materials, including food, pharmaceutical products 
and raw ingredients. Compared to normal pictures multispectral images have vastly more data contained within, which can be interrogated to reveal information 
that’s invisible to the naked human eye and provide feedback on which to make process decisions.
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Figure 1: VideometerLab 3: 19 LEDs at separate 
wavelengths are strobed successively to illuminate 
the sample with monochrome light. A CCD camera 
captures an image during each LED strobe period.

Figure 2: Schematic of the VL3: Internal diffuse 
refl ection of the LEDs by the ultra-white inner surface 
of the sphere ensures diffuse homogeneous light for 
increased reproducibility, dynamic range, and low 
scatter/shadow effects.
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and blue pixels score negatively as they are more like the T. aestivum spectral 
signature. When the model is run on the control samples, it scores nearly all pixels in 
the left image as T. durum and nearly all pixels in the right image as T. aestivum, as 
would be expected for a pure sample (Figure 5).

For an image of a sample of unknown composition - a mixture of T. durum and T. 
aestivum (Figure 6A) – those grain pixels with a spectrum that are more like the 
T. durum spectrum will be scored as highly positive (false coloured red), and grain 
pixels with spectra that are more like the T. aestivum spectrum will be scored highly 
negative (false coloured blue) (Figure 6B). 

It is immediately clear that this sample is a mixture of two different types because 
each grain is false-coloured based on an objective score of its similarity to the known 
control sample spectra.

Object separation and analysis (blob toolbox) automatically separates touching grains, scores 
each one as being more like T. durum or more like T. aestivum, and returns a table of results 
indicating the number and percentage of each different type of grain in an image (Figure 6). 
The process can very quickly image and analyse samples to give an objective assessment of 
whether and to what degree a sample of grain is adulterated with other types of grain, and 
save this data for further analysis.

It is easy to update models to take account of seasonal and geographic variation in wheat 
phenotypes, so users can always be sure they have a reliable, fast and objective way to 
quickly detect adulteration and contamination. The Spectraseed program (developed by 
Videometer and Aarhus University) aims to provide an ISTA-certifi ed database of seed and 
grain spectral characteristics providing a trusted resource to develop and update models for 
seed/grain discrimination, disease and more.

Conclusion - Multispectral Imaging as a QA tool
Current methods of choice for determination of adulteration involve time-consuming and 
expensive molecular biology methods, in particular real-time PCR. Whilst molecular biology 
approaches are effective, they need specialist laboratory equipment and consumables, costly 
reagents and a requirement for specialist training. Most molecular biology approaches for 
food authenticity testing are also destructive as the sample must be ground down so that 
DNA can be extracted.

The VideometerLab 3 instrument can differentiate between surface colour, texture and 
chemical composition for a range of materials. It is more applicable to grain and seed 
analysis compared to traditional spectroscopy techniques because spatial information on a 
sample reveals contamination, disease and adulteration that would be missed. Even closely 
related varieties such as T. durum (durum wheat) and T. aestivum (common wheat) have 
signifi cantly different spectral response signatures which can be used to build a model for 
identifi cation and quantifi cation purposes in suspected cases of fraud.
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Figure 3: Spectral signatures of T. durum (left image, red highlight and plot) and T. aestivum (right image, blue 
highlight and plot). Illumination wavelength is on the x-axis and percentage refl ectance is on the y-axis. Each 
plot has 19 data points, one for each LED illumination wavelength against the mean (average) refl ectance 
of all pixels highlighted with the paint-brush tool. Though similar in overall shape there is a clear difference 
between them, which allows the VideometerLab software to recognise and discriminate between the two. 
Note the cross-over point at 780 nm, a tell-tale mark that these two spectra are distinct and a model can be 
built to distinguish them.

Figure 4: To train the statistical model, control samples of T. durum (left) and T. aestivum (right) wheat grains 
in each image are highlighted to provide sets of training pixels to discriminate. These training sets were used 
in Figure 3 to plot the average (mean) refl ectance value for each wavelength, as our sample from the total 
population of grain pixels.

Figure 5: Original (top images) and statistically transformed images (bottom images) of pure samples of T. 
durum (left) and T. aestivum (right). The discrimination model has scored every pixel in both images from the 
trained model. If a pixel has a spectrum more like T. durum it is coloured red, if it is more like T. aestivum it is 
coloured blue. 

Figure 6A: Application of the model to a blind 
sample of mixed wheat grains. The software 
automatically removes pixels it recognises as either 
the blue background plate or the petri dish, leaving 
just the grains (6A). Some grains are touching each 
other, so the software separates them with a thin 
one-pixel wide line.

Figure 6B: The nCDA discrimination model is 
applied to every pixel left in the image. If a pixel’s 
spectrum is more like the spectral signature of a 
T. durum grain it is graded on an arbitrary scale as 
positive (false-coloured red) and if it is more like T. 
aestivum it is graded as negative (false-coloured 
blue). Adulterant grains are immediately obvious in 
the image.

Figure 7: Blob toolbox software module automatically segments and sorts the grains in the order of likelihood 
of being T. durum grains (least likely fi rst i.e. the adulterant T. aestivum grains). CIELab colour, size and shape 
information is given for each blob by default, and more features can be calculated if desired. The sorting score 
is based on a nCDA model that was built for spectral discrimination only. A more robust, sophisticated model 
would incorporate further stages of size, shape and texture analysis to improve the ability of the model to 
discriminate T. durum grains from T. aestivum grains based on multiple correlated factors.

Spotlight Food.indd   2 04/03/2015   11:59


