• Precise High Temperature Synthesis Advances Nanomaterial Research

Laboratory Products

Precise High Temperature Synthesis Advances Nanomaterial Research

Jul 08 2014

Asynt reports on how the School of Chemistry at Monash University in Melbourne, Australia has invested in a range of its DrySyn MULTI heating block systems to support its ground breaking synthetic research in photovoltaics, water splitting and nanoimaging.

In order to improve safety in his laboratories, Leone Spiccia, Professor of Chemistry at Monash University sought laboratory apparatus to replace oil bath systems traditionally used for all general syntheses.

He commented:  “After a lengthy evaluation process we decided to switch to DrySyn heating block systems as they are inherently safer to use than heated oil baths, avoiding the risk of oil spillage that can lead to burns when hot or may cause someone to slip over”.

Professor Spiccia added: “We are using DrySyn products inside our nanoimaging team. As part of this research we synthesise nanoparticles based on lanthanides – for which we must reach high temperatures (> 300°C).  For this work, we need to have precise fine control of both the final temperature and the heating speed together with a good heat transfer to obtain good quality particles with a narrow size distribution. We could not use an oil bath because of the high temperatures and heating mantles cannot provide the control we needed for the synthesis, so DrySyn has been really important to us to achieve good research results”.

The DrySyn MULTI from Asynt provides a safe and convenient way to perform precisely controlled heated reactions in parallel. Affordably priced, the DrySyn MULTI converts any standard hotplate stirrer into a reaction block accommodating three flasks or up to 12 reactions in tubes or vials. Made of chemically resistant, anodised aluminium, DrySyn MULTI heating blocks offer excellent heating performance to over 300ºC and can heat a reaction flask 25% faster than an oil bath. 


Digital Edition

Lab Asia 31.2 April 2024

April 2024

In This Edition Chromatography Articles - Approaches to troubleshooting an SPE method for the analysis of oligonucleotides (pt i) - High-precision liquid flow processes demand full fluidic c...

View all digital editions

Events

FORUMESURE

Apr 22 2024 Marrakech, Morroco

Korea Lab 2024

Apr 23 2024 Kintex, South Korea

Korea Chem 2024

Apr 23 2024 Seoul, South Korea

Lab Indonesia

Apr 24 2024 Jakarta, Indonesia

View all events