• CE Mark Approval for Pediatric Disease Breathalyser Announced

Laboratory Products

CE Mark Approval for Pediatric Disease Breathalyser Announced

Oct 17 2016

Owlstone Medical have announced it has developed and received CE mark approval for a paediatric version of the company’s disease breathalyser, ReCIVA™. The marking extends the scope of breath testing in early stage diagnostics and therapy response to include children and in particular, the difficult to manage group of child asthma patients. Both the adult and paediatric versions of the breathalyser are now being used in EMBER (East Midlands Breathomics Pathology Node), a £2.5 million project, funded by the Medical Research Council (MRC) and the Engineering and Physical Sciences Research Council (EPSRC). The primary aim of EMBER is to develop breath-based systems for molecular pathology of disease and clinically validate breathomics as a new diagnostic modality.

Owlstone Medical uses the Respiration Collector for In Vitro Analysis (ReCIVA), in combination with the Field Asymmetric Ion Mobility Spectrometer (FAIMS) sensor platform, to accurately and selectively detect volatile organic compounds (VOCs) in breath. In February, the company won an NHS contract for STRATA (Stratification of Asthma Treatment by Breath Analysis) to adapt its disease breathalyser technology for precision medicine and companion diagnostics in asthma. The paediatric version of ReCIVA is suitable from ages 5 and up and has been developed as breath sampling offers a completely non-invasive way to test children.

Billy Boyle, co-founder and CEO at Owlstone Medical commented: “Managing the diagnosis and treatment of children presenting with asthma and severe breathing difficulties is often problematic. Breath analysis presents a significant opportunity to better predict how a child will respond to certain treatments, including steroids and expensive biologics. In developing a paediatric breath sampler we are expanding the scope of projects such as EMBER to include children as an important group in the study of asthma, and more generally extending other biomarker and discovery studies using breath.”

Professor Chris Brightling, EMBER and Leicester NIHR Respiratory Biomedical Research Unit Director, Professor in Respiratory Medicine at University of Leicester, Precision Medicine Institute added: “Choosing the right treatment for the right patient is especially challenging in children as obtaining samples such as blood to measure disease activity can be difficult. Breath analysis offers an excellent opportunity to sample the airway by simply breathing into a mask. This presents a new approach to understand disease and make better treatment decisions.”


Digital Edition

Lab Asia 31.2 April 2024

April 2024

In This Edition Chromatography Articles - Approaches to troubleshooting an SPE method for the analysis of oligonucleotides (pt i) - High-precision liquid flow processes demand full fluidic c...

View all digital editions

Events

Expomed Eurasia

Apr 25 2024 Istanbul, Turkey

AOCS Annual Meeting & Expo

Apr 28 2024 Montreal, Quebec, Canada

SETAC Europe

May 05 2024 Seville, Spain

InformEx Zone at CPhl North America

May 07 2024 Pennsylvania, PA, USA

ISHM 2024

May 14 2024 Oklahoma City, OK, USA

View all events