Chromatography

Automation and Liquid Chromatography-Tandem Mass Spectrometry in Therapeutic Drug Monitoring

Author details: Mikaël Levi^{1,} Neil Loftus²

¹ MS Business Unit, Life Science Business Department, Analytical & Measuring Instruments Division Shimadzu Corporation, Kyoto, Japan.

² MS Business Unit Overseas, Life Science Business Department, Analytical & Measuring Instruments Division Shimadzu Corporation, Manchester, UK.

Therapeutic drug monitoring (TDM) has become a key clinical tool to help individualise therapy, check compliance and maximise response while lowering side effects. Liquid chromatography-tandem mass spectrometry has become a major technology in TDM given its inherent specificity, sensitivity and quantitative capability for small molecule drug analysis. Within the context of a routine clinical pathology environment there are considerable advantages in integrating mass spectrometry into small molecule drug monitoring when compared to immunoassays. This review considers the impact of LC-MS/MS in a routine clinical pathology laboratory compared to conventional immunoassay techniques and highlights mass spectrometry in the analysis of immunosuppressant's and anticonvulsants.

1. Introduction

Therapeutic drug monitoring (TDM) is a multi-disciplinary science helping to understand the factors that determine the dose-effect relationship and to use this knowledge to optimise drug treatment (maximise efficacy /minimise side effects). In many routine clinical pathology laboratories, the panels of drugs subject to routine TDM in patients is limited, including several immunosuppressive drugs, antibiotics, antiepileptics, antidepressants, digoxin and methotrexate. This reflects the need to monitor drug classes that have a narrow therapeutic index, established consequences for under- or over-dosing, a defined relationship between blood concentration and clinical/toxic effect, significant variation within and between individuals and for drugs that have a proven knowledge base for clinical management [1-3] (see *Table 1*).

In most routine clinical pathology laboratories, automated immunoassay platforms dominate bioanalytical drug assays. However, immunoassay techniques may produce results that have a bias due to the cross reactivity of the active metabolites, batch-to-batch heterogeneity in antibodies or reagent quality, high-dose-hook effect and, for some drug immunoassays, a high cost per analysis [4].

As precision medicine emerges as a possible approach to treat a specific individual patient with a specific disease taking into account individual variability in genes, environment and lifestyle TDM is likely to have a high impact in dose adjustments. However, this is a novel application for TDM and requires extensive assay development and validation together with rapid turnaround times so that assays can be used for drug development and individual patient care. Supporting such analytical and clinical strategies requires methodologies which are versatile and can be easily adapted to a 'laboratory-developed test' (LDT) or 'in-house' assay.

In this article, we highlight the application of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) widely regarded as the gold standard in TDM for immunosuppressants and anticonvulsants and considers the development of further automation.

2. LC-MS/MS for TDM

From a historical point of view, liquid chromatography techniques have been used for TDM with ultra-violet (UV), photo diode array (PDA) or fluorescent detection (FLD) systems for several decades. However, despite the high impact of ultra-highperformance liquid chromatography (UHPLC) [5-7] in reducing run times and enhancing separation efficiency, such detection techniques are limited in terms of specificity often resulting in extensive sample cycle times and poor sensitivity as many compounds lack a natural chromophore or fluorophore [1]. More recently mass spectrometry is now regarded as a key technique for routine clinical pathology laboratories delivering robust, rugged platforms with highly selective and sensitive detection [8]. Its capability in the development of assays for individual drugs ('laboratory-developed tests' (LDTs) or 'inhouse' assays) and in multiplexing analyte panels creates new opportunities in expanding the number of drug assays. By increasing the number of drug assays, helping to provide better access to the technology and using novel blood sampling strategies including micro-sampling for pediatric TDM or at home sampling [9-12] also helps position TDM for personalised medicine.

3. Automated Sample Management and Preparation

Biological fluids are highly complex matrices which present challenges in matrix management as endogenous and exogenous components result in compound and system-specific effects in mass spectrometry. Negating the effects of the matrix needs to be carefully considered in all sample preparation and management protocols. Matrix effects can lead to isobaric interferences, particulate clogging, ion suppression or ion enhancement resulting in a difference between the signal intensity detected in a neat standard solution compared to a matrix-matched standard [13-16].

In electrospray ionisation, ion suppression is due to a change in the droplet formation and surface tension which will affect charge transfer efficiency. Non-volatile compounds such as blood phospholipids, salts, uncharged matrix components, reagent impurities, drugs and metabolites are known to produce ion suppression or enhancement [17]. To help reduce the impact of matrix effects on bioanalytical assays there are several strategies open for the analyst. One of the most important techniques is to use appropriate and validated internal standards, particularly stable-isotope-labelled analogues (SIL-ISTD) to help correct for ion signal changes and handling errors in sampling preparation protocols. However, for many assays the effect of high inter and intra-patient variability in endogenous molecule concentrations also requires sample clean-up using extraction or purification techniques such as liquid-liquid extraction (LLE), solid-phase extraction (SPE) or protein precipitation (PPT). Each technique needs to be considered in the context of assay performance to achieve an acceptable level of accuracy and precision while also taking into account the efficiency and recovery of the extraction in addition to the ease of use and cost per sample.

Figure 1: General view of the LC-MS/MS system with integrated sample preparation module CLAM-2000.

LAB ASIA - JANUARY/FEBRUARY 2018

For high throughput assays, automated sample preparation platforms are now used. One such example is the Clinical Laboratory Automated sample preparation Module (CLAM-2000) integrated with LC-MS/MS (LCMS-8060; *Figure 1*). The CLAM-2000/LCMS-8060 platform is the first of its kind in bringing an automated solution to routine clinical pathology accelerating the concept of patient sample to result. The CLAM-2000 supports integrated calibrators and quality controls throughout the batch analysis, parallel analysis and sample preparation and can be fully adapted to a range of sample preparation protocols including reagent aliquoting, ISTD addition and extraction for automated LC-MS/ MS analysis.

The system is designed as an open architecture for method development and routine sample analysis enabling the validation of LDT's to increase sample throughput, reduce the risk of human errors, minimise user contact with biological samples and simplify operation.

Its application to immunosuppressant's and anticonvulsant's is highlighted below.

4. Immunosuppressant drugs

Immunosuppressant drugs are used to reduce the activity of the immune system and prevent transplant rejection. The major drugs used are calcineurin inhibitors, cyclosporine and tacrolimus, the mTOR inhibitors, sirolimus and everolimus. Circulating concentrations of these compounds should remain within a narrow therapeutic range, as overdosing can cause serious toxicity and long-term morbidity, and underdosing can cause rejection [3]. As immunosuppressant drugs result in a high pharmacokinetic variability between individual patients, TDM is now an established approach to mitigate the risks associated with organ transplantation.

Several commercial immunoassays are available for the TDM of immunosuppressant's, however, all immunoassays show a significant positive bias compared to LC-MS/MS methods [18]. Despite the availability of automated immunoassays each test is restricted to one analyte for each test when in many clinical settings multiple immunosuppressants are used in one individual patient [1, 19]. In this example, an automated LC-MS/MS method is described for the routine TDM analysis of immunosuppressants.

4.1. Materials and Methods

The quantitative analysis of immunosuppressant drugs was performed using reagents provided in a Dosimmune[®] kit (Asachim, France) [20]. A UHPLC-MS/MS system (Nexera X2 and LCMS-8050, Shimadzu Corporation, Kyoto) within online SPE was used for sample analysis (see *Figure 2*). Automatic sample preparation was performed using the CLAM-2000 module (Shimadzu Corporaiton, Kyoto). Sample preparation was performed using the extraction buffer and internal standard set provided in the kit.

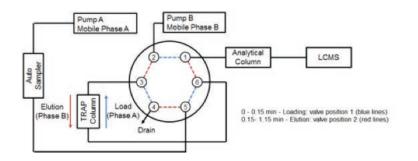
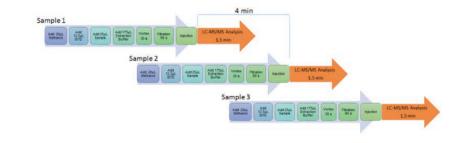
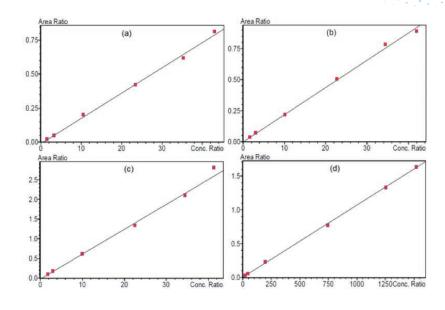
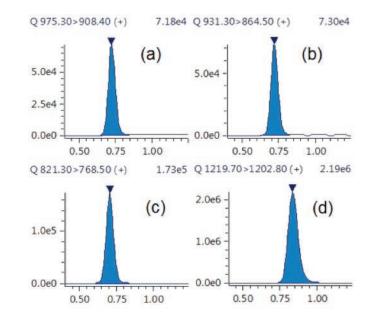




Figure 2: Flow diagram of online SPE-LC-MS/MS system for immunosuppressants.

25 μL of whole blood (calibrators, quality control samples (QC) or sample) were mixed with 12.5 μL of SIL-ISTD solution and 175 μL of extraction buffer (mixture of zinc sulphate 0.1M, methanol and acetonitrile 5/3/2 v/v). After 30 seconds of vortex, the samples were filtered for 1 min with the CLAM-2000 device. The resulting extract was then automatically transferred into the LC-MS/MS autosampler for analysis. Then, 20μL of extract was injected onto the online SPE column (Ascentis C8 5μm 30x4.6mm, Supelco, USA). After 0.15 min, the SPE column was backflushed and the resulting analytes transferred to the LC column (Ascentis C18 5μm 50x2.1mm, Supelco, USA), maintained at 65°C, for separation and detection. The SPE mobile phase (formate buffer/methanol 9/1 v/v) and LC mobile phase (formate buffer/methanol 1/9 v/v) were pumped at 2 mL/min and 0.8 mL/min, respectively. An overview of the analytical process is shown in *Figure 3*. Using sample preparation overlapped with analysis, a result was generated every 4 minutes. Mass spectrometry parameters are described in *Table 2*. As it is common for these compounds, the monitored transitions used ammonium adducts [M+NH4]⁺ as the precursor ion.

5

Figure 4: Calibration curves for (a) Everolimus, (b) Sirolimus, (c) Tacrolimus and (d) Cyclosporine A.


everolimus, sirolimus and tacrolimus, and from 5 to 1500 ng/mL for cyclosporin A. Four QC levels were processed in 8 individual replicates.

4.2. Linearity

Linearity of the method was assessed by calculating the relative deviation of calibration standards against the calculated linear regression model. In all cases, deviation was within $\pm 15\%$, meeting the acceptance criteria. Typical calibration curves are showed in *Figure 4*.

4.3. Accuracy and Precision

Accuracy and precision of the QC samples were calculated across the 8 replicates per concentration level. Results are reported in *Table 3*. A typical chromatogram of target compounds is shown in *Figure 5*. All QC analyses were within the acceptance criteria for accuracy and precision.

4.4. Comparison with immunoassay

Patient samples were assayed in parallel by immunoassays and LC-MS/MS (see *Figure 6*, data not published, courtesy of Shimadzu Italy). For each drug compound, there was good agreement between both techniques with a correlation coefficient r>0.9.

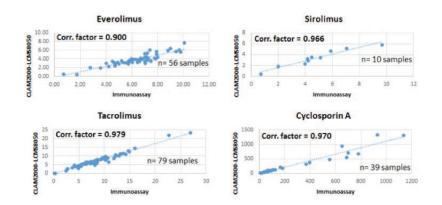


Figure 3: Sample processing overview for immunosuppressants.

Calibration standards and QC samples prepared in whole blood provided with the kit were used to assess data quality. Calibration (6 levels) ranged from 0.5 to 40 ng/mL for

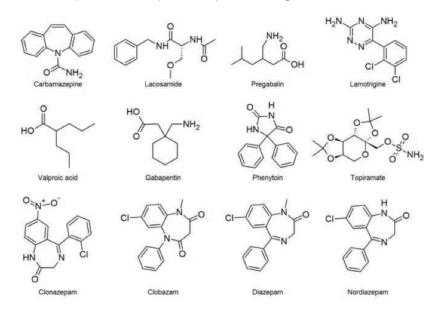
Figure 6: Correlation data between immunoassay and LC-MS/MS for immunosuppressants.

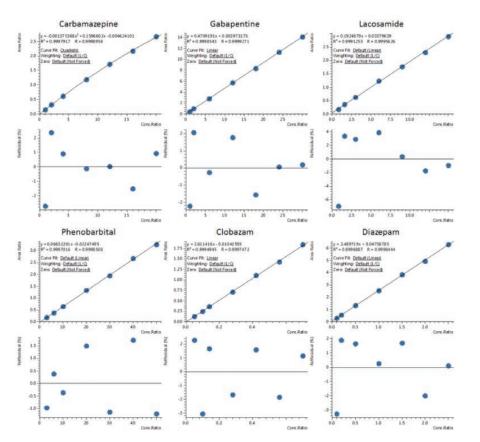
WWW.LABMATE-ONLINE.COM

5. Anticonvulsants

Epilepsy is a chronic neurological disorder which is characterised by recurrent epileptic seizures whose frequency and rhythm are difficult to predict. For the pharmacological therapy of epilepsy, a variety of antiepileptic drugs (AEDs) are available today, most of which exhibit a pronounced intra- and inter- individual variability in pharmacokinetics. In many patients, it is necessary to use multiple drugs, however, as interactions between different AEDs also affect the pharmacokinetics there is a clear need for TDM [21].

AEDs as a therapeutic class show diverse chemistries because of their different mode of action. In addition, some benzodiazepines are also used in the treatment of seizures. However, the therapeutic concentrations are in lower ranges compared to most AEDs. Structures of representative compounds are presented in *Figure 7*.




Figure 7: Structures of the most common antiepileptic drugs and benzodiazepines included in this study.

To meet this need a TDM method was developed to measure simultaneously a large panel of anticonvulsant drugs with different chemistries and target concentrations.

5.1. Materials and Methods

Certified standard solutions of each compound were purchased from Cerilliant (Sigma-Aldrich, USA). ¹³C₆-Zonisamide and D₅-Phenobarbital were used as the internal standard in positive and negative ionisation, respectively. The *Table 4* summarises the list of compounds assayed.

Calibration standard levels were prepared by spiking a blank plasma pool (EDTA-K3, 6 donors, mixed gender, BioreclamationIVT, USA). Seven levels were prepared. For each compound, the calibration range was determined using the therapeutic reference range.

The lower limit of quantification (LLOQ) was set as 5 times lower than the low reference concentration. The upper limit of quantification (ULOQ) was set as 1.5 times higher than the high reference concentration. Targeted calibration ranges can be found in *Table 4*.

Quality control samples were prepared. Concentration levels were LLOQ (QCLOQ), 3 times the LLOQ (QC A), 50% of the concentration range (QC B) and 90% of the concentration range (QC C). Five individual replicates were prepared per level.

Automatic sample preparation was performed using CLAM-2000 module (Shimadzu, Kyoto) coupled to UHPLC-MS/MS system (Nexera X2 and LCMS-8050, Shimadzu, Kyoto).

For sample preparation, $30 \ \mu$ L of plasma were mixed with $270 \ \mu$ L of SIL-ISTD solution ($10 \ \mu$ g/mL in methanol). After 30 seconds of vortex, the samples were filtered during 1 min. The resulting extract was then automatically transferred into the LC-MS/MS autosampler for analysis. Then, 0.5μ L of extract were injected on the LC column (Shim-Pack GIS C18 5µm 50x2.1mm Shimadzu, Japan), maintained at 45°C. Mobile phase were (A) ammonium formate buffer 3mM pH3.6 and (B) methanol. A gradient from 10%B to 90%B in 2 minutes was run at 0.6 mL/min. The total run time was of 3.5 minutes. Two transitions per compound were acquired for quantification and confirmation of identification (except for Valproic Acid). Mass spectrometry parameters are described in *Tables 5 and 6*.

5.2. Linearity

Linearity of the method was assessed by calculating the relative deviation of calibration standards against the calculated linear regression model. In all cases, deviation was within $\pm 15\%$, meeting the acceptance criteria. Typical calibration curves are shown in *Figure 8*.

5.3 Recovery

Recovery of the method was evaluated by comparing peak areas measured in QC samples prepared in plasma (n=6) to the ones measured in QC samples made in neat solution (n=5). Total recovery, combining extraction and matrix effect, was measured. Results are presented in *Table 7*. For all compounds, recovery was consistent across the concentration range and the average was greater than 80%.

5.3. Accuracy and Precision

Accuracy and precision of the QC samples were calculated across 5 replicates per concentration level. Results are reported in *Table 8*. A typical chromatogram of target compounds is shown in *Figure 9*. All QC samples were within the acceptance criteria for accuracy and precision.

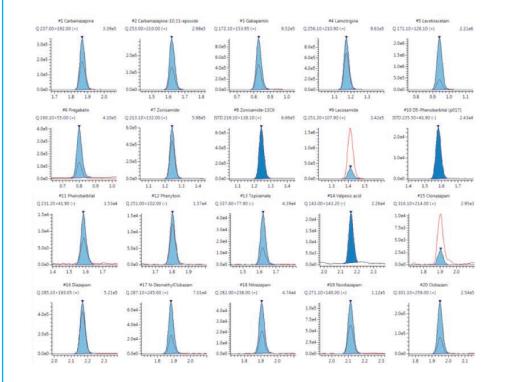


Figure 9: Representative anticonvulsant chromatograms at the QC A level (3 times the LLOQ).

LAB ASIA - JANUARY/FEBRUARY 2018

Tables

Table 1: Targeted drugs in TDM

Class	Drugs
Antibiotics	Amikacin, Amoxicillin, Azithromycin, Cefixime, Cefoperazone, Cefuroxime,
	Cephalexin, Clarithromycin, Clavulanic acid, Clindamycin, Colistin A and B,
	Daptomycin, Erythromycin, Ethambutol, Gentamicin, Isoniazid, Levofloxacin,
	Neomycin, Pyrazinamide, Rifampicin, Sublactam, Sulfamethoxazole,
	Tobramycin, Trimethoprim, Vancomycin.
Anticonvulsants	Carbamazepine, Clobazam, Clonazepam, Clorazepate, Diazepam,
	Eslicarbazepine acetate, Ethosuximide, Ezogabine (Retigabine), Felbamate,
	Gabapentin, Lacosamide, Lamotrigine, Levetiracetam, Lorazepam,
	Midazolam, Nitrazepam, Nordiazepam, Oxcarbazepine, Perampanel,
	Phenobarbital, Phenytoin, Pregabalin, Primidone, Progabide, Rufinamide,
	Stiripentol, Tiagabine, Topiramate, Trimethadione, Valproic acid, Vigabatrin,
	Zonisamide.
Antidepressants	Amisulrpide, Aripiprazole, Citalopram, Clozapine, Doxepin, Duloxetine,
	Escitalopram, Fluoxetine, Flupentixol, Fluvoxamine, Haloperidol, Mianserin,
	Mirtazapine, Moclobemide, Nordoxepin, Norfluoxetine, Nortriptyline,
	Olanzapine, Paroxetine, Pimozide, Prochlorperazine, Quetiapine,
	Risperidone, Sertraline, Trazodone, Tryptophan, Venlafaxine, Zuclopenthixol.
Antifungals	Amphotericin B, Anidulafungin, Caspofungin, Fluconazole, Iodiconazole,
	Isavuconazole, Itraconazole, Micafungin, Posaconazole, Voriconazole.
Anticancer drugs	Busulfan, Carboplatin, Docetaxel, Erlotinib, Gefitinib, Ifosfamide, Imatinib,
	Irinotecan, Lapatinib, Lenalomide, Melphalan, Methotrexate, Nilotinib,
	Paclitaxel, Pemetrexed, Procarbazine, Raltitrexed, Sorafenib, Sunitinib,
	Tamoxifen, Tegafur, Thalidomide, Vinblastine, Vincristine.
Anti-viral drugs	Abacavir, Amprenavir, Atazanavir, Darunavir, Delavirdine, Didadosine,
	Efavirenz, Emtricitabine, Etravirine, Fosamprenavir, Ganciclovir, Indinavir,
	Lamivudine, Lopinavir, Maraviroc, Nelfinavir, Nevirapine, Raltegravir,
	Ribavirin, Ritonavir, Saquinavir, Stavudine, Tenofovir, Tipranavir,
	Valganciclovir, Viramidine, Zalcitabine, Zidovudine.
Cardioactive drugs	Acetyldigitoxin, Amiodarone, Deslanoside, Digitoxin, Digoxin,
	Methyldigoxin, Lanatoside, Rivaroxaban
Immunosuppressants	Cyclosporine, Everolimus, Mycophenolate glucuronide, Mycophenolic acid,
	Sirolimus, Tacrolimus.

Table 2: MS/MS parameters for immunosuppressants

Parameter	Value									
System	: LCMS-8050	: LCMS-8050								
lonisation	: Heated ESI									
Acquisition Mode	: MRM	: MRM								
Transitions	: Compound	MRM	CE (V)	Dwell time (ms)						
	Everolimus	975.6 > 908.5	20	59						
	¹³ C ₂ D ₄ -Everolimus	981.5 > 914.5	20	59						
	Sirolimus	931.6 > 864.5	18	59						
	¹³ CD ₃ -Sirolimus	935.4 > 864.5	18	59						
	Tacrolimus	821.5 > 768.6	22	59						
	¹³ CD ₄ -Tacrolimus	826.4 > 773.6	22	59						
	Cyclosporin A	1219.9 > 1202.8	21	59						
	D ₁₂ -Cyclosporin A	1231.8 > 1214.9	21	59						
Ion Source Temperature	: Interface	Heating block	Desolvation line							
	200°C	200°C		250°C						
Ion Source Gas Flow	: Heating gas	Drying gas	Ne	Nebulising gas						
	10 L/min	10 L/min		3 L/min						
CID Gas Pressure	: 270 kPa									

Table 3: Immunosuppressant QC Results

	Level (ng/mL)	%RSD	Accuracy		
Cyclosporin A	Low (30.5)	2.4%	80.0%		
	Mid-low (260.1)	7.2%	86.0%		
	Mid-High (1172.8)	3.5%	93.6%		
	High (1432.8)	9.9%	93.2%		
Everolimus	Low (2.8)	7.9%	88.2%		
	Mid-low (7.2)	7.0%	97.4%		
	Mid-High (30.5)	4.2%	94.2%		
	High (38.1)	8.9%	93.4%		
Sirolimus	Low (3)	15%	87.0%		
	Mid-low (7.5)	8.0%	93.6%		
	Mid-High (29.5)	5.4%	96.0%		
	High (36.6)	11%	96.5%		
Tacrolimus	Low (2.7)	9.1%	99.5%		
	Mid-low (6.9)	5.4%	97.0%		
	Mid-High (28.9)	3.2%	99.0%		
	High (36.2)	3.9%	98.0%		

7

Table 4: Targeted anticonvulsant drugs

Compound Name	Acronym	Class	Calibration Range (mg/L)	
			LLOQ	ULOQ
Carbamazepine	CBZ	Carboxamide	1	20
Carbamazepine-10,11-epoxide	EPO-CBZ	Carboxamide	2	45
Gabapentin	GBP	GABA analogue	1	30
Lacosamide	LCA	Modified amino acid	0.8	15
Lamotrigine	LMT	Triazine	1	25
Levetiracetam	LVT	Pyrrolidine	4	70
Phenobarbital	PBR	Barbiturate	3	50
Phenytoin	PNT	Hydantoin	1	30
Pregabalin	PGB	GABA analogue	0.5	10
Topiramate	TPA	Fructose derivative	1	20
Valproic acid	VPA	Fatty acid	8	120
Zonisamide	ZNA	Sulphonamide	3	45
Clobazam	CLBZ	Benzodiazepine	0.05	0.7
Clonazepam	CZP	Benzodiazepine	0.005	0.07
Diazepam	DIA	Benzodiazepine	0.1	2.5
N-Desmethylclobazam	DM-CLBZ	Benzodiazepine	0.06	4.5
Nitrazepam	NTZ	Benzodiazepine	0.02	0.3
Nordiazepam	NDIA	Benzodiazepine	0.08	1.2

Table 5: MS common parameters for anticonvulsants

Parameter		Value						
System		: LCMS-8050						
lonisation		: Heated ESI						
Acquisition Mode		: MRM						
Ion Source	:	Interface	Heating block	Desolvation line				
Temperature								
		300°C	400°C	150°C				
Ion Source Gas Flow	: F	leating gas	Drying gas	Nebulising gas				
		10 L/min	10 L/min	3 L/min				
CID Gas Pressure		: 270 kPa						
Pause Time		: 1 ms						
Polarity Switching		: 5ms						

WWW.LABMATE-ONLINE.COM

Table 6: MRM parameters for anticonvulsants

Name	Ionisation	Quantification MRM CE(V)	Confirmation MRM CE(V)	Dwell Time (ms)
Carbamazepine	pos	237 > 192 -21	237 > 165 -43	8
Carbamazepine-10,11- Epoxide	pos	253 > 210 -12	253 > 167 -35	8
Gabapentin	pos	172 > 154 -15	172 > 137 -16	19
Lamotrigine	pos	256 > 211 -26	256 > 43 -53	14
Levetiracetam	pos	171 > 126 -15	171 > 69 -27	19
Pregabalin	pos	160 > 55 -22	160 > 97 -14	24
Zonisamide	pos	213 > 132 -14	213 > 77 -33	12
13C6-Zonisamide	pos	219 > 138 -15		26
Lacosamide	pos	251 > 108 -20	251 > 91 -50	12
D5-Phenobarbital	neg	236 > 42 24		18
Phenobarbital	neg	231 > 42 22	231 > 188 11	8
Phenytoin	neg	251 > 102 23	251 > 208 16	8
Topiramate	neg	338 > 78 31	338 > 96 25	8
Valproic Acid	neg	143 > 143 11		20
Clonazepam	pos	316 > 214 -38	316 > 270 -25	8
Diazepam	pos	285 > 193 -31	285 > 154 -27	9
N-Desmethylclobazam	pos	287 > 245 -18	287 > 210 -31	8
Nitrazepam	pos	282 > 236 -24	282 > 180 -38	8
Nordiazepam	pos	271 > 140 -27	271 > 165 -27	9
Clobazam	pos	301 > 259 -21	301 > 224 -32	8

Table 7: Recovery results for anticonvulsants

		Total Recov	ery (%)							
		CBZ	EPO- CBZ	GBP	LMT	LVT	PGB	ZNA	LCA	PBR
QC LOQ	Pool A	101	103	92.0	84.2	109	89.4	82.6	86.9	81.8
	Pool B	108	109	97.3	92.2	119	96.4	91.3	95.4	90.9
QC A	Pool A	98.7	103	91.9	83.9	107	90.0	82.2	88.1	83.0
	Pool B	101	104	91.8	85.9	109	90.9	84.8	90.4	77.5
QC B	Pool A	114	110	102	94.9	118	102	94.1	99.6	90.7
	Pool B	113	112	98.9	94.6	120	99.9	93.1	98.9	88.6
QC C	Pool A	104	105	94.3	91.7	110	95.5	88.8	94.5	85.0
	Pool B	97.6	99.6	87.2	86.4	106	88.4	82.2	88.7	78.8
Mean		105	106	94.4	89.2	112	94.1	87.4	92.8	84.5
%RSD		6%	4%	5%	5%	5%	5%	6%	5%	6%
		PNT	TPA	VPA	CZP	DIA	DM- CLBZ	NTZ	NDIA	CLBZ
QC LOQ	Pool A	78.0	75.9	81.1	105	80.3	77.3	82.7	84.2	84.4
	Pool B	85.8	86.8	87.3	125	96.1	84.2	93.9	121*	93.5
QC A	Pool A	82.1	77.5	83.1	83.8	77.1	83.2	85.0	85.4	84.0
	Pool B	80.0	79.4	85.0	94.9	82.4	88.1	86.0	94.0	84.9
QC B	Pool A	89.6	88.1	93.6	92.3	88.0	95.5	92.9	93.0	95.0
	Pool B	89.2	86.9	91.7	89.1	89.0	93.7	91.3	97.2	94.1
QC C	Pool A	83.8	79.3	88.0	89.2	86.0	90.2	89.2	90.1	89.0
	Pool B	77.2	73.7	80.4	84.3	79.1	83.2	82.5	84.4	81.5
Mean		83.2	81.0	86.3	91.2	84.8	86.9	87.9	89.8	88.3
%RSD		6%	7%	6%	8%	7%	7%	5%	6%	6%

(*) Excluded values due to plasma contamination.

6. Conclusion

LC-MS/MS has unique advantages and capabilities which make this technique a key technology asset in TDM laboratories. Advances in hardware engineering and software design are making a high impact for laboratories without the need for highly trained

Table 8: Anticonvulsant QC Results

		CBZ	EPO- CBZ	GBP	LMT	LVT	PGB	ZNA	LCA	PBR
QC LOQ	Mean Accuracy	103	99.6	110	105	100	110	115	100	109
	%RSD	2%	2%	0.8%	0.5%	3%	3%	0.7%	1%	8%
QC A	Mean Accuracy	103	98.1	102	99.6	98.1	108	94.4	106	97.2
	%RSD	3%	3%	0.5%	0.8%	3%	0.5%	0.3%	1%	5%
QC B	Mean Accuracy	100	103	98.9	98.1	100	98.1	95.1	100	99.1
	%RSD	3%	2%	0.2%	0.9%	2%	1%	0.8%	1%	3%
QC C	Mean Accuracy	110	111	103	103	107	103	104	102	98.5
	%RSD	3%	4%	0.3%	1%	3%	0.3%	0.6%	1%	1%
		PNT	TPA	VPA	CZP	DIA	DM- CLBZ	NTZ	NDIA	CLBZ
QC LOQ	Mean Accuracy	105	111	102	112	90.3	102	102	89.5	107
	%RSD	12%	3%	3%	16%	2%	4%	6%	3%	2%
QC A	Mean Accuracy	104	98.5	97.0	93.3	94.9	100	94.2	93.3	97.7
	%RSD	4%	2%	2%	11%	0.6%	2%	2%	1%	2%
QC B	Mean Accuracy	100	96.1	98.0	95.7	93.4	97.6	98.3	92.0	97.7
	%RSD	3%	2%	1%	7%	0.7%	1%	1%	0.7%	0.7%
QC C	Mean Accuracy	98.6	99.7	100	102	104	103	104	102	107
	%RSD	3%	2%	2%	3%	2%	1%	0.5%	2%	2%

References

- 1. F. Saint-Marcoux, F.-L. Sauvage, P. Marquet. Anal. Bioanal. Chem 388 (2007) 1327-1349.
- 2. J.E. Adaway, B.G. Keevil. J. Chromatogr. B 883-884 (2012) 33-49.
- 3. P.J. Taylor, C.-H. Tai, M.E. Franklin, P.I. Pillans. Clin. Biochem. 44 (2011) 14-20.
- 4. M. Vogeser, C. Seger. J. Chromatogr. B 883-884 (2012) 1-2.
- 5. S. Barco, A. Zunino, A. D'Avolio, L. Barbagallo, A. Maffia, G. Tripodi, E. Castagnola, G. Cangemi. J. Pharm. Biomed. Anal. 138 (2017) 142-145.
- 6. B. Toussaint, F. Lanternier, C. Woloch, D. Fournier, M. Launay, E. Billaud, E. Dannaoui, O. Lortholary, V. Jullien. J. Chromatogr. B 1046 (2017) 26-33.
- 7. V. Mistretta, N. Dubois, R. Denooz, C. Charlier. Acta Clinica Belgica 69 (2014) 53-61.
- 8. M. Himmelbasch. J. Chromatogr. B 883-884 (2012) 3-17.
- 9. B.G. Keevil, J. Fildes, A. Baynes, N. Yonan. Ann. Clin. Biochem 46 (2009) 144-145.
- 10. N. Yonan, R. Martyszczuk, A. Machaal, A. Baynes, B.G. Keevil. Clin Transplant. 20 (2006) 221-225.
- 11. W. Li, F.L.S. Tse. Biomed. Chromatogr. 24 (2010) 49-65.
- 12. P.M. Edelbroek, J. Van der Heijden, L.M.L. Stolk. Ther. Drug. Monit. 31 (2009) 327-336.
- 13. M. Vogeser, C. Seger. Clin. Chem. 56:8 (2010) 1234-1244.
- 14. T.M. Annesley. Clin. Chem. 49:7 (2003) 1041-1044.
- 15. B.K. Matuszewski, M.L. Constanzer, M. Chavez-Eng. Anal. Chem. 70 (1998) 882-889.
- B.K. Matuszewski, M.L. Constanzer, M. Chavez-Eng. Anal. Chem. 75 (2003) 3019-3030.
- 17. S.T. Wu, D. Schoener, M. Jemal. Rapid. Commun. Mass Spectrom. 22 (2008) 2873-2881.
- W. Tszyrsznic. A. Borowiec, E. Pawlowska, R. Jaswiec, D. Zochowska, I. Bartlomiejczyk, J. Zegarska, L. Paczek, M. Dadlez. J. Chromatogr. B 928 (2013) 9-15.
- 19. F. Aucella, V. Lauriola, G. Vecchione, G.L. Tiscia, E. Grandone. J. Pharm. Biomed. Anal. 86 (2013) 123-126.

operators and this development is likely to continue to further automate assays and to expand the number of drugs measured by TDM. In this brief review, automated solutions for immunosuppressants and anticonvulsants have highlighted the considerable advance in integrated system designs for routine clinical pathology laboratories using LC-MS/MS.

- 20. M. Fernandez, A. Jaffuel, F. Dayot, J.-F. Hoeffler, A. Huteau. 65th ASMS, Indianapolis (2017) Poster ThP086.
- 21. D. Vecchietti, C. Ghilardi, K. Kern, S. Moreau, I. Cabruja. 65th ASMS, Indianapolis (2017) Poster TP450.

f 🕒 in

Read, Share and Comment on this Article, visit: www.labmate-online.com/article

