• Materials discovery could help meet Electronic Industry needs
    Alannah Hallas and Mario González-Rivas (Credit: CLS)

News & Views

Materials discovery could help meet Electronic Industry needs

Mar 30 2023

A material made of common elements that has the potential for use in everyday electronics such as cellphones and which could make them both cheaper more environmentally friendly, has been discovered by researchers at the University of British Columbia.

The research team used the REIXS beamline of the Canadian Light Source (CLS) University of Saskatchewan to quantify the material’s behaviour: “We’ve recently discovered a family of materials that have an exciting property of having very adjustable magnetic properties,” said lead researcher Alannah Hallas, an Assistant Professor in the Department of Physics and Astronomy at UBC. “Magnetic materials are super important because they are the backbone of many modern technologies.”

The high-entropy material is composed of a disordered mixture of five or more elements. While entropy, or the disorder of a system, is usually considered a disadvantage, this new material proved to have useful properties such as its adjustable magnetism.

The research, conducted through the Stewart Blusson Quantum Matter Institute, involved creating the material under high heat and rapidly cooling it to create a disordered crystal lattice. This disorder was then imaged at the CLS.

Mario González-Rivas, a PhD candidate working on the project, said that making the high-entropy crystals was not the most difficult part of the experiment. Rather, the challenge was finding the optimal level of disorder: “There’s a fair amount of optimizing to do . . . (but) the method we describe in the paper is scalable and is industrially relevant,” he said.

The team’s breakthrough is important because many magnetic materials for high-tech products are made from rare earth elements — which are relatively rare. They are also difficult to mine and to purify.

“This type of research could be promising for any application that needs magnetic materials,” added Hallas. “Just by changing the ratios of the atoms, we can elicit a wide range of behaviours and strengths.”

While the field of high-entropy materials is relatively new — having first appeared in scientific literature in 2015 — significant strides are already being made, including from the Hallas team with help from the CLS.

More information online


Digital Edition

International Labmate 49.6 - Sept 2024

September 2024

Chromatography Articles - HPLC gradient validation using non-invasive flowmeters Mass Spectrometry & Spectroscopy Articles - From R&D to QC, making NMR accessible for everyone: Putting NMR...

View all digital editions

Events

Lab Innovations 2024

Oct 30 2024 Birmingham, UK

SPIE Photonex

Oct 30 2024 Manchester, UK

MEDICA 2024

Nov 11 2024 Dusseldorf, Germany

FILTECH

Nov 12 2024 Cologne, Germany

Intech

Nov 12 2024 Tel Aviv, Israel

View all events