• Fertility Research - Can Stem Cells provide Embryo Models?
    An image of a cell embryo model (left) and a natural human embryo (right) Credit: University of Exeter

News

Fertility Research - Can Stem Cells provide Embryo Models?

“Our new technique provides for the first time a reliable system to study early development in humans without using embryos. This shouldn’t be seen as a move towards producing babies in a laboratory, but rather as an important research tool that could benefit IVF and infertility studies” Ge Guo.

The ability of stem cells to turn into different types of cell has led scientists at the University of Exeter’s Living Systems Institute, along with colleagues from the University of Cambridge, to develop a method of organising lab-grown stem cells into an accurate model of the first stage of human embryo development.

These models could benefit research into infertility, by furthering understanding of how embryos develop and the conditions needed to avoid miscarriage and other complications, as well as the possibility of improving the development of embryos in assisted conception procedures such as IVF.

Models resemble a blastocyst

Funded by the Medial Research Council, the study discovered that a human stem cell was able to generate the founding elements of a blastocyst – the very early formation of an embryo after a fertilised egg divides. Professor Austin Smith, Director of the University of Exeter’s Living Systems Institute, said: “Finding that stem cells can create all the elements of an early embryo is a revelation. The stem cells come from a fully-formed blastocyst, yet they are able to recreate exactly the same whole embryo structure. This is quite remarkable and unlocks exciting possibilities for learning about the human embryo.”

After arranging the stem cells into clusters, two molecules known to influence how cells behave in early development were briefly introduced. After 3 days, the scientists found that 80 per cent of the clusters had organised themselves after into structures resembling the blastocyst stage of an embryo – a ball of around 200 cells that forms from the fertilised egg after 6 days. The team went on to show that the artificial embryos have the same active genes as the natural embryo.

Research tool for IVF

Dr Ge Guo of the University’s institute said: “Our new technique provides for the first time a reliable system to study early development in humans without using embryos. This shouldn’t be seen as a move towards producing babies in a laboratory, but rather as an important research tool that could benefit IVF and infertility studies”

The next stage for the researchers is to understand how to develop the artificial embryos a few days further to study the critical period when an embryo would implant into the womb, which is when many embryos fail to develop properly.

‘Naive stem cell blastocyst model captures human embryo lineage segregation’, is published in Cell Stem Cell.

More information online


Digital Edition

Lab Asia 32.1 Feb 2025

February 2025

Chromatography Articles - Comparing volumetric and thermal flowmeters for assessing and validating liquid chromatography performance Mass Spectrometry & Spectroscopy Articles - The importa...

View all digital editions

Events

SPS Smart Production Solutions Guangzhou

Feb 25 2025 Guanghzou, China

SmartLab Exchange

Feb 25 2025 Amsterdam, Netherlands

Nepal Lab

Feb 27 2025 Kathmandu, Nepal

PITTCON 2025

Mar 01 2025 Boston, MA, USA

IFPAC 2025

Mar 02 2025 Bethesda, MD, USA

View all events