Mass Spectrometry & Spectroscopy

Is Human Genetic Modification Possible?

Sep 01 2017 Read 1611 Times

Short for Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR is a revolutionary gene editing technique that’s taken the scientific world by storm. Both ultra-precise and easy to access, CRISPR could be the next step towards wiping out genetically inherited diseases and even curing cancers. A host of exciting CRISPR concepts are currently undergoing clinical trials and proof-of-concept experiments, with one particularly controversial focus - human embryos.

A “cut and paste” concept

While there have been rumours coming out of China for years, US scientists have now confirmed that the first attempts to create genetically modified human embryos have been a success. Led by researchers at the Oregon Health and Science University in Portland, the study used CRISPR to change the DNA of multiple one-cell human embryos. Basically, this allowed them to "snip" out segments of a particular genome and switch them with customised replacements.  As in previous cases, the embryos were terminated several days after creation to prevent them from developing into foetuses.

The results were reported in MIT Technology Review and revealed that the technique empowers scientists with the ability to edit out genetic errors. Ultimately, this could be used to eliminate the risk of developing debilitating conditions in later life.

Concerns over “designer babies”

So what’s next? According to the team, the positive results confirm that the world’s first CRISPR baby could be on the horizon. The scientists have assured the scientific community that no unintended genetic errors were introduced to the embryos during the procedure, which has been a main cause of concern for previous studies.

While gene editing embryos is considered less controversial that living humans, there are still plenty of ethical hurdles to cross. Critics are concerned about the concept of ‘designer babies’ which could see a trend in parent customising features like eye colour, hair colour and even skin colour. Eventually, genetic modification could even be used to increase intelligence.

But when used in the right context gene editing could change lives. Currently, much of the focus is on boosting human immune system to help fight off aggressive cancers. When used on embryos, CRISPR could be used to edit out hereditary diseases altogether.

Unsurprisingly, cutting edge scientific research isn’t possible without powerful, highly sensitive instruments. For a closer look at the latest equipment used to screen biological samples in forensic toxicology and clinical research, ‘Pushing the Limits of Speed and Sensitivity in Drug Screening – an LC-MS solution’ spotlights innovative LC-MS methods.

Read comments0

Do you like or dislike what you have read? Why not post a comment to tell others / the manufacturer and our Editor what you think. To leave comments please complete the form below. Providing the content is approved, your comment will be on screen in less than 24 hours. Leaving comments on product information and articles can assist with future editorial and article content. Post questions, thoughts or simply whether you like the content.


Digital Edition

International Labmate January/February 2018

February 2018

In This Issue... Chromatography - Automation and Liquid Chromatography - FID Gas Station - New GC Gas Calculator Introduced Mass Spectrometry & Spectroscopy - The Forensics 664 vMetho...

View all digital editions

Events

PITTCON 2018

Feb 26 2018 Orlando, Fl, USA

PHAR-EAST

Mar 01 2018 Singapore

SIAF GUANGZHOU

Mar 04 2018 Guanghzou, China

Forensics Europe Expo

Mar 06 2018 London, UK

View all events