• NMR System used for Fuel Analysis Research at the Instituto de Quimica

Mass Spectrometry & Spectroscopy

NMR System used for Fuel Analysis Research at the Instituto de Quimica

Apr 03 2014

Magritek report on the use of their Spinsolve Benchtop NMR spectrometer for research at the Instituto de Quimica, University at Campinas in Brazil.

The Institute of Chemistry is dedicated to training students in chemistry and chemical technology as well as teachers of Chemistry. Professors Jose Jarbas and Pasquini Celio lead a group of research scientists in the use of NMR spectrometry. Their student, Mario Killner takes up the story.

Mario Killner spent a year in the renowned NMR laboratory of Professor Bernhard Bluemich at the Technical University of Aachen in Germany. He was working on the development of test methods to monitor biodiesel production. This was based on diesel fuel quality parameters developed in German industry. The success of this work led to the purchase of the Magritek Spinsolve Benchtop NMR spectrometer.

Describing his work, Mario talks first about previous experimental methods. "This is the first time that our group has had access to NMR in our laboratories. For a long time, our research group has been working mostly with NIR spectroscopy and, most recently, with Terahertz spectroscopy to develop new methodologies applying chemometric tools."

Continuing, he said, "Now we'd like to implement the NMR spectroscopy in our research starting with analysis of fuel. We want to create new methodologies applying NMR with chemometric tools for quality control of Brazilian fuels which will mainly be gasoline and diesel. We believe that the benefits of using NMR will be on the speed of analysis, the cost of analysis and also the possibility of automation sometime in the future."

Magritek's latest Spinsolve system allows 13C NMR Spectroscopy. It delivers more detail in its spectra than use of the more basic 1H nucleus. Carbon has a large chemical shift range of approximately 250 ppm and using composite pulse decoupling there is usually a single peak per carbon atom in the molecule making carbon spectra much more informative than proton spectra.

Furthermore, multinuclear and multidimensional experiments reveal additional structural information such as how carbon and proton atoms in the molecule are connected. This enables NMR to easily resolve isomers that are often confused with other analytical methods.

Magritek

sales@magritek.com


Digital Edition

ILM 49.5 July

July 2024

Chromatography Articles - Understanding PFAS: Analysis and Implications Mass Spectrometry & Spectroscopy Articles - MS detection of Alzheimer’s blood-based biomarkers LIMS - Essent...

View all digital editions

Events

ADLM 2024

Jul 28 2024 San Diego, CA USA

InaLab 2024

Jul 30 2024 Jakarta, Indonesia

Miconex

Jul 31 2024 Chengdu, China

ACS National Meeting - Fall 2024

Aug 18 2024 Denver, CO, USA

EMC2024

Aug 25 2024 Copenhagen, Denmark

View all events