• What Techniques Are Used in Foodomics?

Mass Spectrometry & Spectroscopy

What Techniques Are Used in Foodomics?

Jul 29 2022

Food fraud doesn’t just have an enormous economic impact. Many cases also put consumers at risk, with scandals like the 2009 peanut butter salmonella outbreak demonstrating how dangerous food fraud can be. Around the world, foodomics is a first-line of defence against food fraud. Read on to find out more about some of the cutting-edge techniques used by foodomics scientists, and the role they plan in preventing economically motivated crimes within the food and agriculture industries.

Chromatography for lipidomics analysis

Lipidomics is an advanced discipline used to identify and quantify different lipid species, as well as observe how they interact with other lipids. With more than 1000 major lipid species currently identified and countless minor species unknown to scientists, lipid classification is a complex and highly specialised field.

It’s particular useful in the food science sector as lipids dictate biological functions in the body. Lipidomics helps scientists understand how individual lipid species affect metabolic pathways and ultimately, promote or hinder health. Scientists rely on a myriad of separation-based techniques for lipidomics analysis, including standard chromatographic methods such as high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC) and gas chromatography (GC).

Tandem Mass Spectrometry to create molecule signatures

Metabolomics, the study of small molecules that interact with biological systems, is fundamental to foodomics. The field is concerned with identifying and quantifying chemical substances produced by the metabolism and analysing how they affect biological processes.

At the University of California San Diego, a team of researchers used tandem mass spectrometry (MS/MS) to gather human metabolomics data. A novel technique called reference-data-driven (RDD) analysis was used to match this information with a virtual MS/MS database. This allowed the team to identify food-derived molecules not previously detected in blood and stool samples. The technique is called untargeted metabolomics, with a report in the journal Nature Biotechnology explaining how it allowed the team to develop a huge database of molecular signatures.

Next-Generation Sequencing to screen saffron

Usually sold by the gram, saffron is one of the rarest and most expensive spices in the world. This naturally makes it a target for economically motivated food fraud. In Europe, Next-Generation Sequencing (NGS) is being used to create transparency and accountability in the saffron market. The advanced DNA analysis technique has allowed forensic food analysts to verify a wide range of plant species, including saffron derived from the Crocus sativus flower. Most laboratories use Polymerase Chain Reaction (PCR) technology to amplify DNA samples. This technique is also widely used in medical cannabis laboratories to identify microorganisms and mycotoxins.

From identifying fraudulently labelled meat products to detecting adulterants like sucrose syrup in honey, foodomics plays a critical role in the right against food fraud. Find out more in our in-depth review, ‘A Complete Guide to Food Fraud & Foodomics’. Or read 'Accurate Testing Keeps Farm Animals Healthy' to discover the importance of testing on animals at the very start of the food production chain.


Digital Edition

ILM 49.5 July

July 2024

Chromatography Articles - Understanding PFAS: Analysis and Implications Mass Spectrometry & Spectroscopy Articles - MS detection of Alzheimer’s blood-based biomarkers LIMS - Essent...

View all digital editions

Events

ADLM 2024

Jul 28 2024 San Diego, CA USA

InaLab 2024

Jul 30 2024 Jakarta, Indonesia

Miconex

Jul 31 2024 Chengdu, China

ACS National Meeting - Fall 2024

Aug 18 2024 Denver, CO, USA

EMC2024

Aug 25 2024 Copenhagen, Denmark

View all events