• What is Quantum Entanglement?

Microscopy & Microtechniques

What is Quantum Entanglement?

Nov 03 2022

This year the Nobel Prize in Physics was awarded to Alain Aspect, John Clauser and Anton Zeilinger for their pioneering work on quantum entanglement. The evocatively named physical phenomenon describes the linking of two of particles, regardless of how much distance is between them. 

The origins of quantum entanglement

The concept of quantum entanglement was first introduced by physicist John Bell in the 1960s and scientists have been attempting to demystify the phenomenon ever since. This year, the Royal Swedish Academy of Sciences recognised Aspect, Clauser and Zeilinger “for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science.”

All three scientists used entangled quantum states to conduct revolutionary experiments that prove paired particles can operate as a single entity, even when physically separated. Their findings paved the way for exciting new research and technologies founded in the quantum entanglement framework. This includes quantum computing, as well as ultra-secure quantum encrypted communication and complex quantum networks.

“It has become increasingly clear that a new kind of quantum technology is emerging. We can see that the laureates’ work with entangled states is of great importance, even beyond the fundamental questions about the interpretation of quantum mechanics,” says Anders Irbäck, a professor of theoretical physics at Lund University and Chair of the Nobel Committee for Physics.

What does an ‘entangled state’ mean?

The term ‘entanglement’ describes the shared relationship between a pair of particles. This entangled state means that regardless of physical distance, two particles can share the same quantum state.  

“Using ground-breaking experiments, Alain Aspect, John Clauser and Anton Zeilinger have demonstrated the potential to investigate and control particles that are in entangled states,” reads a statement issued by the Royal Swedish Academy of Sciences. “What happens to one particle in an entangled pair determines what happens to the other, even if they are really too far apart to affect each other. The laureates’ development of experimental tools has laid the foundation for a new era of quantum technology.”

A new perspective on quantum mechanics

No arguments here, quantum entanglement is a highly complex and mindboggling concept. Thanks to Aspect, Clauser and Zeilinger, the scientific community now understands more than ever about the physical phenomenon. Scientists are also equipped with an exciting new set of tools to manipulate entangled particle systems and harness the enormous potential of quantum mechanics.

Quantum entanglement is one of many scientific breakthroughs celebrated in 2022. Find out more about Confocal Raman Imaging, a high-resolution analytical tool used to study everything from astromaterials to plant matter in ‘Conference Review: 18th Confocal Raman Imaging Symposium’.


Digital Edition

Labmate UK & Ireland 49.2 - March 2024

March 2024

In This Edition Articles - Choosing the right LIMS for your lab: Four key considerations - Pay increases to continue but staff focus on security and training - Building a global culture of...

View all digital editions

Events

Making Pharmaceuticals

Mar 26 2024 Milan, Italy

FORUM LABO LYON

Mar 27 2024 Lyon, France

Microbiology Society Annual Conference 2024

Apr 08 2024 Edinburgh 2024

analytica 2024

Apr 09 2024 Munich, Germany

ChemBio Finland 2024

Apr 10 2024 Helsinki, Finland

View all events