News & Views

Could Copper Provide Breakthrough in Spread of Flu Infections

Feb 14 2006 Read 1910 Times

Recent research at the University of Southampton, (Hants, UK), shows that the Influenza A virus is virtually eradicated within six hours on copper surfaces. Influenza A viruses cause seasonal infections resulting in around 12,000 deaths a year in the UK1. The influenza A family of viruses includes the avian flu strain. Professor Bill Keevil and Dr Jonathan Noyce, microbiology researchers at the University's School of Biological Sciences, detail the findings in a study being prepared for submission for peer-reviewed publication later this year. Professor Keevil, who heads up the School's Microbiology research group, explained: "The findings are so pertinent to the current concerns about containing a potential outbreak of the avian flu strain, that we felt it important to provide some of the preliminary results at this time."
The Southampton researchers placed 2 million plaque-forming units of Influenza A (H1N1) on coupons of C11000 copper (common, pure copper sheet metal) and on S30400 (common stainless steel) at room temperature and then came back periodically to determine the survival rates of the samples. On the stainless steel surface, the pathogen declined to 1 million after six hours and to 500,000 after 24 hours. Meanwhile, the copper surface achieved a reduction to 500,000 after only one hour and inactivated all but 500 - a 99.99% reduction - after just six hours.
In the research, Professor Keevil notes that the H1N1 strain tested is nearly identical to the H5N1 (avian) strain and that the effectiveness of copper's antimicrobial properties should be nearly identical as well. He explains that, while vaccines stimulate host antibodies to target specific exposed cell surface structures (epitopes), copper's antimicrobial action probably attacks the overall structure of the virus and therefore has a broad-spectrum effect. These results are "consistent with the demonstrated antimicrobial effects of copper cited in published studies on E. coli O157:H7, Methicillin-Resistant Staphylococcus aureus (the superbug, MRSA) and Listeria," said Professor Keevil, adding that similar antimicrobial efficacy may be achieved by the infusion of copper ions into fabrics, filters or other materials. However, such applications may have diminished effectiveness over time, because the amount of copper in such materials is much less than in solid copper alloys.
Suggesting it would be worthwhile to consider using uncoated copper or high-copper alloys, such as many brasses and bronzes, for common-touch surfaces to help minimise cross-contamination, Professor Keevil said: "Door knobs and handles, push plates, countertops, sinks and other frequently-touched hardware in healthcare and other public facilities are prime candidates for use of copper alloys to help control the spread of infection." The Southampton research was sponsored by the Copper Development Association (CDA) in the USA and the International Copper Association.
Read comments0

Do you like or dislike what you have read? Why not post a comment to tell others / the manufacturer and our Editor what you think. To leave comments please complete the form below. Providing the content is approved, your comment will be on screen in less than 24 hours. Leaving comments on product information and articles can assist with future editorial and article content. Post questions, thoughts or simply whether you like the content.


Digital Edition

International Labmate Buyers Guide 2018

June 2018

In This Edition Articles - Choosing the Optimum Plasma Spectrochemistry Technique for Measuring Elemental Impurities in Pharmaceuticals - Monitoring Airborne Molecular Contamination in Indoo...

View all digital editions

Events

INTERPHEX JAPAN 2018

Jun 27 2018 Tokyo, Japan

PREP 2018

Jul 08 2018 Baltimore, MD, USA

AACC Annual Meeting & Clinical Lab Expo 2018

Jul 29 2018 Chicago, IL, USA

HPLC 2018

Jul 29 2018 Washington DC, USA

M&M 2018

Aug 05 2018 Baltimore, MD, USA

View all events