News & Views

  • New Style Optical Traps bring Step-Change to Future Research

New Style Optical Traps bring Step-Change to Future Research

Jan 15 2018 Read 458 Times

Researchers at Dundee University have come up with a new way of creating optical traps – tightly focused laser beams that can confine and manipulate microscopic objects such as cells, bacteria and strands of DNA - using holographic beam-shaping to deploy such traps for the first time through hair-thin optical fibres capable of penetrating safely through living tissues. The ultra narrow optical fibre will enable researchers to access hidden cavities or introduce traps deep inside living organisms without causing any major damage even to the most sensitive tissues.

The new class of multimode fibres developed by the team, which feature previously unattainable levels of light concentration necessary for stable confinement of micro objects, also enables the positioning of multiple laser traps with nanometre precision.

With a footprint being as small as 35 μm in diameter (about half the thickness of a human hair), the instrument can be used to demonstrate the manipulation of micro-objects within a turbid cavity inaccessible to bulk optics.

A paper* describing the study, which was conducted in collaboration with colleagues from Germany and the Czech Republic, was authored by Dundee scientists Ivo Jorge Oliveira Teixeira Leite, Sergey Nikolayevich Turtaev, Professor Sir Alfred Cuschieri and Professor Tomáš Čižmár.

“Just like the proton packs used by the Ghostbusters, optical traps confine and manipulate objects, only remotely from the complexity of living organisms,” said Professor Čižmár. “To the best of our knowledge, this work is the first demonstration of three-dimensional confinement and manipulation of micro-objects by light via an optical fibre, which opens the door to exciting exploitations of optical traps in-vivo.

“This represent a step-change for future research because the primary application of optical traps is the study of intracellular machineries, which are overactive in cancer, and for which a new generation of anti-cancer drugs are being developed. Now we can study these processes in the environment of complex living tissue and organisms rather than artificial conditions.”

Professor Cuschieri added, “While there are no immediate implications for health practice so far, there is significant potential for better understanding of mechanical actions of biological molecules. Thanks to optical tweezers, we now have a much better idea about functions of muscles at molecular level as well as genetic processes and their disruptions.

”Now we have the chance to access real depths of living organisms and, without affecting the processes of life, perform elaborate studies of mechano-chemistry at the single molecule level, all in its natural environment.”

For details and videos of the traps at work visit

*Published in Nature Photonics

Reader comments

Do you like or dislike what you have read? Why not post a comment to tell others / the manufacturer and our Editor what you think. To leave comments please complete the form below. Providing the content is approved, your comment will be on screen in less than 24 hours. Leaving comments on product information and articles can assist with future editorial and article content. Post questions, thoughts or simply whether you like the content.

Post a Comment

Digital Edition

International Labmate Buyers' Guide 2019

June 2019

In This Editon Articles - More than One Way to Hit the Bullseye - Gas Chromatography - Vacuum Ultraviolet Spectroscopy - News Bites from the UK Laboratory Industry Mass Spectrometry & Sp...

View all digital editions


Chemspec Europe

Jun 26 2019 Basel, Switzerland

MMC 2019

Jul 01 2019 Manchester, UK


Jul 03 2019 Tokyo, Japan

PREP 2019

Jul 07 2019 Baltimore, MD, USA

analytica Lab Africa

Jul 09 2019 Johannesburg, South Africa

View all events