• Made to Measure Viral Drug Delivery

Laboratory Products

Made to Measure Viral Drug Delivery

Jul 16 2011

While viruses are so often seen as the enemy, modern scientific techniques may soon be able to harness the strengths of a virus for drug delivery systems that are designed to treat diseases, rather than cause them. Using a Zetasizer Nano particle characterisation system from Malvern Instruments, researchers at Indiana University’s (IU) Molecular and Cellular Biochemistry Department have been studying self-assembled virus-based drug delivery systems that can be tuned to a particular size enabling the uptake of specific functional cargo. Dr Stella Aniagyei, post doctoral research associate at the IU’s Molecular and Cellular Biochemistry department, explained: “Viruses tend to be nanosized, symmetrical and structurally consistent with a narrow size distribution. Despite this apparent biological simplicity, viruses are extremely good at delivering their own genome to living biological tissue. This makes them a prime target for biological engineers looking for an efficient transportation device that will deliver drug directly to infected cells.”

“Here at IU’s Nanocharacterisation facility, the Malvern Zetasizer Nano is the ‘go to’ instrument for characterisation of assembled product,” said Dr Aniagyei.

“Structures closely resembling virus give a narrow size distribution. If they don’t, then we know the process has gone off the biological path. We are currently looking at aggregation limits to move towards defining optimum ionic conditions for the assembly of nucleic acid binding to Gag proteins [one of the nine genes in the retrovirus RNA genome].” Malvern’s Zetasizer range uses light scattering techniques to measure hydrodynamic size, zeta potential and molecular weight of proteins and nanoparticles. According to Dr Aniagyei: “Malvern’s Zetasizer Nano is very useful for protein characterisation. The ease with which it can be used makes it the perfect instrument for the student environment. It definitely is one of the easiest instruments I’ve had to work with.”

Indiana University (IU) is already in the spotlight having just received $900,000 from the Ovarian Cancer Research Fund, or OCRF, to help them prepare the new drug SGI-110 for clinical trials in patients whose once-thwarted ovarian cancer has returned. However, this work is not the only IU project at the cutting edge. Established on July 1 2009, the Department of Molecular and Cellular Biochemistry was the first science department created on the Indiana University
Bloomington campus in 33 years. Linking biology, chemistry, and medical sciences, the department’s main focus is on the priority areas of structural virology and virus assembly.


Digital Edition

Lab Asia 31.2 April 2024

April 2024

In This Edition Chromatography Articles - Approaches to troubleshooting an SPE method for the analysis of oligonucleotides (pt i) - High-precision liquid flow processes demand full fluidic c...

View all digital editions

Events

SETAC Europe

May 05 2024 Seville, Spain

InformEx Zone at CPhl North America

May 07 2024 Pennsylvania, PA, USA

ISHM 2024

May 14 2024 Oklahoma City, OK, USA

ChemUK 2024

May 15 2024 Birmingham, UK

Water Expo Nigeria 2024

May 21 2024 Lagos, Nigeria

View all events