Microscopy & Microtechniques

  • Report on High Temperature Stage Use for Research on the Properties of 2D Materials

Report on High Temperature Stage Use for Research on the Properties of 2D Materials

Sep 08 2016 Read 998 Times

Market leaders in temperature controlled microscopy, Linkam Scientific Instruments, report on the use of their high temperature TS1500 stage for research into the properties of 2D materials.


Professor Yong Zhang is the Bissell Distinguished Professor in the Electrical and Computer Engineering Department at the University of North Carolina Charlotte (UNCC). He leads a group which studies how an epitaxial or supporting substrate can impact the material properties of a 2D material that is often presumed to have weak bonding with the substrate. In addition, they investigate a thermal activation process that requires high temperature capability. In turn, a high temperature experimental set up allows the study of thermal stability under various conditions.


Since choosing the Linkam TS1500 high temperature stage for their work, the group has used the stage multiple times to study different material systems with the goals of understanding the effects of substrate on 2D materials to reveal the intrinsic properties of the materials and control and modify them with substrate engineering. These include black phosphorus, monolayer molybdenum disulphide (MoS2), tungsten disulphide (WS2) and graphene. Other materials, such as copper-zinc-tin selenide (CZTSe), a new solar cell material, have resulted in publications.


Professor Zhang has noted several key findings from this research. He said: “We have made some important findings which are common among 2D materials. Firstly, we saw that film properties are sensitive to not only the substrate type (e.g. SiO2 vs. sapphire) but also the bonding situation (e.g. epitaxially grown vs. transferred). Second, we found that high temperature studies reveal how film morphology impacts the material properties and how morphology changes with heating. We also saw that the sensitivity of the substrate influence on the film thickness depends on the material property of interest. For instance, the effect of the substrate remains significant for thermal conductivity of the film even the film is already relatively thick, but is much less significant for electronic properties.”


Read comments0

Do you like or dislike what you have read? Why not post a comment to tell others / the manufacturer and our Editor what you think. To leave comments please complete the form below. Providing the content is approved, your comment will be on screen in less than 24 hours. Leaving comments on product information and articles can assist with future editorial and article content. Post questions, thoughts or simply whether you like the content.

Digital Edition

Lab Asia December 2018

December 2018

In This Edition Articles - Determination of heroin in street drug samples with printable surface enhanced Raman scattering (P-SERS) - Advances in Protein Sample Preparation: Centrifugation i...

View all digital editions


Smart Factory Expo (SFE 2019)

Jan 16 2019 Tokyo, Japan

Arab Health

Jan 28 2019 Dubai International Convention & Exhibition Centre

Nano Tech 2019

Jan 30 2019 Tokyo, Japan

World Congress on Chromatography

Jan 31 2019 Paris, France

SLAS 2019

Feb 02 2019 Washington, DC, USA.

View all events