News & Views

  • Tracking Meltflow Indicates Optimal Process Conditions
    Prof. Hongbiao Dong

Tracking Meltflow Indicates Optimal Process Conditions

Feb 04 2019 Read 286 Times

A project being led by the University of Leicester has been exploring the internal flow behaviour in additive manufacturing of metals and arc welding – the most widely used welding process in modern manufacturing. The findings, led by Professor Hongbiao Dong from the University’s Department of Engineering has shown how to optimise this process to improve efficiency and cost.

The collaborative research between the University of Leicester, Delft University of Technology, Diamond Light Source, University College Dublin and TATA Steel Research UK focused on tracking small tungsten and tantalum particles in the melt pools created during the welding process.

With much higher melting points the particles remained solid in the melt pool long enough for them to be tracked using the intense beams of X-rays emitted by Diamond Light Source’ Beam l12, selected for its specialised high energy, high-speed imaging capability at thousands of frames per second.

The resulting high-speed movies revealed how surface tension affects the shape of the welding melt pool and its associated speed and patterns of flow; it also showed, for the first time, that the melt flow behaviour is similar to that previously only seen via computer simulations.

The results indicated that arc welding can be optimised by controlling the flow of the melt pool and changing the associated active elements on the surface.

Professor Dong said: “Understanding what happens to the liquid in melt pools during welding and metal-based additive manufacturing remains a challenge. The findings will help us design and optimise the welding and additive manufacturing processes to make components with improved properties at a reduced cost.
Welding is the most economical and effective way to join metals permanently, and is a vital component of our manufacturing economy.”
 

A project being led by the University of Leicester has been exploring the internal flow behaviour in additive manufacturing of metals and arc welding – the most widely used welding process in modern manufacturing. The findings, led by Professor Hongbiao Dong from the University’s Department of Engineering has shown how to optimise this process to improve efficiency and cost.

The collaborative research between the University of Leicester, Delft University of Technology, Diamond Light Source, University College Dublin and TATA Steel Research UK focused on tracking small tungsten and tantalum particles in the melt pools created during the welding process.

With much higher melting points the particles remained solid in the melt pool long enough for them to be tracked using the intense beams of X-rays emitted by Diamond Light Source’ Beam l12, selected for its specialised high energy, high-speed imaging capability at thousands of frames per second.

The resulting high-speed movies revealed how surface tension affects the shape of the welding melt pool and its associated speed and patterns of flow; it also showed, for the first time, that the melt flow behaviour is similar to that previously only seen via computer simulations.

The results indicated that arc welding can be optimised by controlling the flow of the melt pool and changing the associated active elements on the surface.

Professor Dong said: “Understanding what happens to the liquid in melt pools during welding and metal-based additive manufacturing remains a challenge. The findings will help us design and optimise the welding and additive manufacturing processes to make components with improved properties at a reduced cost.
Welding is the most economical and effective way to join metals permanently, and is a vital component of our manufacturing economy.”
 

Read comments0

Do you like or dislike what you have read? Why not post a comment to tell others / the manufacturer and our Editor what you think. To leave comments please complete the form below. Providing the content is approved, your comment will be on screen in less than 24 hours. Leaving comments on product information and articles can assist with future editorial and article content. Post questions, thoughts or simply whether you like the content.


Digital Edition

Lab Asia February 2019

February 2019

In this edition Articles - Detection of molecular markers in aquatic sediments by ion profi les obtained by GC/MS system - Fighting the Resistance: How Rapid Microbial ID with MALDI MS and A...

View all digital editions

Events

Biotech World

Feb 25 2019 Moscow, Russia

China Lab 2019

Feb 26 2019 Guangzhou, China

SmartLab Exchange

Feb 27 2019 Berlin, Germany

IFPAC Annual Meeting

Mar 03 2019 Maryland, (Washington DC), USA

Forensics Europe Expo

Mar 05 2019 London, UK

View all events