• Cell Movement Discovery Points to Opportunities in Therapeutics

News & Views

Cell Movement Discovery Points to Opportunities in Therapeutics

Jan 27 2020

Many cells in our body are constantly changing shape and moving within our tissues; wound healing and the immune system, for example, depend on migrating cells. Uncontrolled cell migration, however, is a hallmark of metastasis during the development of malignant cancers, so cell migration must be very tightly regulated.

The driving force for cell migration is produced by a protein called actin which act as building blocks by polymerises into rod-like filaments that push the leading edge of the cell forward. The polymerisation of the actin filaments must be balanced by depolymerisation of the filaments at the other end.

Scientists at the University of Helsinki, Finland and Institut Jacques Monod, France, have identified a molecular machinery which drives rapid depolymerisation of actin filaments and recycles the resulting actin monomers for a new round of polymerisation. Two proteins, cyclase-associated protein and cofilin, work together in this.

“By using X-ray crystallography and computer simulations, we could actually see the atomic details of how these two proteins embrace actin filaments and disassemble them into their building blocks. One of the most exciting parts of the project was to see under the microscope how actin filaments suddenly began disappearing when we introduced these two proteins into their vicinity,” says PhD student Tommi Kotila, the lead author of the study from HiLIFE Institute of Biotechnology, University of Helsinki.

In malignant tumours, cells go haywire in their movements, because their migration machinery is not properly controlled. Because, in cancer cells, the regulation of cyclase-associated protein is often defective, the atomistic structure of this machinery may open new avenues for developing therapeutics to inhibit cell migration in cancer.

“This is a great contribution to our understanding of the basic principles of cell migration. It also helps us understand the molecular basis of the uncontrolled migration of cancer cells,” says academy professor Pekka Lappalainen from the Institute of Biotechnology.  

 The study was carried out as a collaboration between the laboratories of Pekka Lappalainen and Ilpo Vattulainen at the University of Helsinki, and Guillaume Romet-Lemonne and Antoine Jégou at the Jacques Monod Institute, Paris, France.

 Art­icle:

Kotila T, Wioland H, Enkavi G, Kogan K, Vattulainen I, Jégou A, Romet-Lemonne G, Lappalainen P. Mechanism of synergistic actin filament pointed end depolymerization by cyclase-associated protein and cofilin. Nature Communications (2019). DOI: 10.1038/s41467-019-13213-2


Digital Edition

Lab Asia 31.2 April 2024

April 2024

In This Edition Chromatography Articles - Approaches to troubleshooting an SPE method for the analysis of oligonucleotides (pt i) - High-precision liquid flow processes demand full fluidic c...

View all digital editions

Events

AOCS Annual Meeting & Expo

Apr 28 2024 Montreal, Quebec, Canada

SETAC Europe

May 05 2024 Seville, Spain

InformEx Zone at CPhl North America

May 07 2024 Pennsylvania, PA, USA

ISHM 2024

May 14 2024 Oklahoma City, OK, USA

ChemUK 2024

May 15 2024 Birmingham, UK

View all events