• 3 Sample Handling Techniques

Laboratory Products

3 Sample Handling Techniques

Jun 18 2021

Analytical systems may deliver results but when it comes to boosting precision and accuracy, the importance of best-practice sample handling techniques should never be underestimated. From minimising the risk of biological and chemical activity to establishing a clear chain-of-custody, sample handling techniques ensure results are as reliable as possible.

Methods will vary depending on the type of sample, meaning it’s important to have a good understanding of what techniques work best in different scenarios. Below, we take a look at some of the most useful sample handling techniques used by scientists around the world:

  • Preservation

From the moment a sample is collected, preservation-based handling processes are used to protect the physical and chemical properties of the specimen. This can involve exposure to ultra-low temperatures to prevent unwanted biological or chemical activity, as well as the use of preservatives.

  • Recommended holding times

All samples should be issued with recommended holding times. This gives scientists a deadline for processing and analysing a specimen and ensures analytical results are not compromised due to sample degradation. While some samples may have a long lifespan, others will start to deteriorate within a matter of hours.

  • Chains of custody

From COVID-19 nasal swabs to vials of agricultural soil, a chain of custody should begin as soon as a sample is collected. This ensures a sample can be tracked right back to its place of origin, with custody seals often used to protect specimens during transit.

Preparation: The Next Step

After samples have been collected, stored, transported and processed using proper handling techniques, research teams can advance to the preparation stage. This can involve the following methods:

  • Fourier-Transform Infrared Spectroscopy (FTIR)

Suitable for use with solids, liquids and gases, FTIR allows scientists to achieve an infrared spectrum of absorption or emission. A purpose-built spectrometer is used to gather spectral data, with a variety of techniques to choose from. These include transmission, Attenuated Total Reflectance (ATR), Diffuse Reflectance (DRIFTS) and Specular Reflectance.

  • Gravimetric sample preparation

Over the past few years, automated techniques such as gravimetric sample preparation have set new benchmarks for efficiency and accuracy. The method has allowed laboratories to drastically reduce Out-of-Specification (OOS) errors, which not only reduces the risk of regulatory fines but also boosts productivity, heightens workplace safety and unlocks cost savings.

Find out more about the latest developments from Mettler-Toledo in ‘How gravimetric sample preparation is helping pharmaceutical manufacturers meet the demands of consumers, regulators, and the market.'


Digital Edition

Lab Asia 31.2 April 2024

April 2024

In This Edition Chromatography Articles - Approaches to troubleshooting an SPE method for the analysis of oligonucleotides (pt i) - High-precision liquid flow processes demand full fluidic c...

View all digital editions

Events

FORUMESURE

Apr 22 2024 Marrakech, Morroco

Korea Lab 2024

Apr 23 2024 Kintex, South Korea

Korea Chem 2024

Apr 23 2024 Seoul, South Korea

Lab Indonesia

Apr 24 2024 Jakarta, Indonesia

View all events