• Closed Loop Reaction Optimisation
    A FlowSyn Maxi flow chemistry system.

Laboratory Products

Closed Loop Reaction Optimisation

Sep 27 2022

Researchers at the University of Pretoria have developed a general platform for performing closed loop reaction optimisation by integrating a Uniqsis FlowSyn Maxi continuous flow reactor with an analytical HPLC.

In the reported work the FlowSyn Maxi was controlled over ethernet using an open-source Node-Red dashboard running on a Raspberry Pi linked to the single objective optimisation algorithm.

Dr Mark Ladlow, Uniqsis Chief Scientific Officer commented: “‘Optimising chemical reactions is an important but time-consuming iterative process. Flow chemistry affords an automated and precise method for performing chemical reactions that is well suited to performing autonomous reaction optimisation under computer control in a closed feedback loop using a suitable optimisation algorithm. Closed-loop control of a flow chemistry reactor is a sequential process whereby the result of each experiment is compared with the desired optimal outcome (in this case, the space-time yield of the reaction). A Bayesian optimisation algorithm then uses the new data to suggest an improved set of reaction conditions for the next experiment. Using real experimental data to update a probabilistic model for the reaction can allow the optimal outcome to be realised more quickly.”

The utility of the University of Pretoria open-source software approach, using the FlowSyn Maxi, was demonstrated by the semi-autonomous optimisation of a representative allylation reaction performed over 33 iterations in a 12-hour period. Beneficially, other Uniqsis flow chemistry instruments may be incorporated into the open-source dashboard to extend this approach to alternative system configurations, potentially capable of performing and optimising a wide range of chemical reactions.

Read the University of Pretoria paper in full.  

Contact Uniqsis to learn more about closed loop reaction optimisation using a FlowSyn Maxi system.

More information online


Digital Edition

Lab Asia 31.2 April 2024

April 2024

In This Edition Chromatography Articles - Approaches to troubleshooting an SPE method for the analysis of oligonucleotides (pt i) - High-precision liquid flow processes demand full fluidic c...

View all digital editions

Events

FORUMESURE

Apr 22 2024 Marrakech, Morroco

Korea Lab 2024

Apr 23 2024 Kintex, South Korea

Korea Chem 2024

Apr 23 2024 Seoul, South Korea

Lab Indonesia

Apr 24 2024 Jakarta, Indonesia

View all events