• Highly Reproducible Flow Chemistry Scale-up of Polymerisation Reactions
    A FlowLab Plus flow chemistry system.
  • The Uniqsis Hotchip is a versatile standalone heated reactor module that is compatible with all Uniqsis glass static mixer reactor blocks.

Laboratory Products

Highly Reproducible Flow Chemistry Scale-up of Polymerisation Reactions

Apr 08 2021

Uniqsis reports researchers at the Helmholtz-Zentrum Institute of Membrane Research are using a FlowLab Plus flow chemistry system with glass static mixer reactor blocks to synthesise well defined polymers.


Synthesising well defined polymers, with a narrow Molecular Weight distribution, has traditionally been achieved by using anionic polymerisation methodologies. However, precise control of Molecular Weight achieved in this way is accompanied by very high sensitivity to impurities, temperature changes and fast polymerisation rates, which leads to high demands on the process control along with challenging laboratory work. More recently radical polymerisation methods such as the Reversible Addition-Fragmentation chain Transfer (RAFT) polymerisation technique have been the focus of polymer research as alternative methods to synthesise well-defined polymers from a variety of monomers.


In a new paper, published by the Helmholtz Institute, a model-assisted approach to develop and optimise a flow chemistry reaction system for the RAFT polymerisation of MMA is presented. A reaction kinetics and a heat-transfer model were used together with in-line NMR spectroscopy to gain insight into the polymerisation process in order to develop strategies for the process optimisation. A screening method was used to investigate a broad range of different residence times in a single experiment. Adjustments were made to the composition of the reaction mixture, the temperature and the flow chemistry reactor setup.


Download the technical paper 67 to find out how to synthesise well-defined polymers.


Designed by chemists for chemists,  FlowLab Plus™ is a versatile modular flow chemistry system built around the Uniqsis Binary Pump™ dual channel reagent delivery system. The system is configured to run both manual and automated flow chemistry reactions. The system may be configured with any combination of up to 4 individual reactor modules. A wide variety of configurations are possible.


To achieve highly reproducible flow chemistry scale-up the control of mixing and temperature is essential, particularly for polymerisation reactions. Precision machined from inert borosilicate glass to withstand a wide temperature range - Glass Static Mixer (GSM) chip reactor blocks from Uniqsis are proven to produce a highly efficient, turbulent mixed reagent stream.

More information online


Digital Edition

Lab Asia 31.2 April 2024

April 2024

In This Edition Chromatography Articles - Approaches to troubleshooting an SPE method for the analysis of oligonucleotides (pt i) - High-precision liquid flow processes demand full fluidic c...

View all digital editions

Events

FORUMESURE

Apr 22 2024 Marrakech, Morroco

Korea Lab 2024

Apr 23 2024 Kintex, South Korea

Korea Chem 2024

Apr 23 2024 Seoul, South Korea

Lab Indonesia

Apr 24 2024 Jakarta, Indonesia

View all events