• Prostate cancer: key protein discovered

News & Views

Prostate cancer: key protein discovered

Apr 25 2011

Cancer researchers have discovered an important protein, produced naturally inside cells, that appears to suppress the growth of prostate cancer cells in the laboratory.

The findings, published tomorrow in the journal Cancer Research, offer promising leads for research towards new treatments.

Prostate cancer is the most common cancer among men in the UK, with 37,500 men diagnosed with the disease every year. Many prostate cancers are slow growing, but in some cases the
cancer is aggressive and spreads to other parts of the body, such as the bone. These cases are much more likely to be fatal.

In the new study, scientists at Imperial College London found that a protein called FUS inhibits the growth of prostate cancer cells in the laboratory, and activates pathways that lead to cell suicide.

The researchers also looked for the FUS protein in samples from prostate cancer patients.

They found that in patients with high levels of FUS, the cancer was less aggressive and was less likely to spread to the bone. Higher levels of FUS also correlated with longer survival. The results suggest that FUS might be a useful marker that can give doctors an indication of how aggressive a tumour will be.

"At the moment, there’s no way to say whether a prostate tumour will kill you or be fairly harmless," said Dr Charlotte Bevan, Senior Author of the study, from the Department of Surgery and Cancer at Imperial College London. "Current hormonal therapies only work for a limited time, and chemotherapy is often ineffective against prostate cancer, so there’s a real need for new treatments.

"These findings suggest that FUS might be able to suppress tumour growth and stop it from spreading to other parts of the body where it can be deadly. It’s early stages yet but if further studies confirm these findings, then FUS might be a promising target for future therapies."


Digital Edition

Lab Asia 31.2 April 2024

April 2024

In This Edition Chromatography Articles - Approaches to troubleshooting an SPE method for the analysis of oligonucleotides (pt i) - High-precision liquid flow processes demand full fluidic c...

View all digital editions

Events

FORUMESURE

Apr 22 2024 Marrakech, Morroco

Korea Lab 2024

Apr 23 2024 Kintex, South Korea

Korea Chem 2024

Apr 23 2024 Seoul, South Korea

Lab Indonesia

Apr 24 2024 Jakarta, Indonesia

View all events