News & Views

  • Virtual Tumours bring Insights to Drug Delivery

Virtual Tumours bring Insights to Drug Delivery

Oct 20 2018 Read 341 Times

University College London (UCL) scientists have designed a virtual modelling technique to create highly detailed 3D models of individual cancerous tumours which can be used for simulation of drug delivery and prediction of their effectiveness.

In the study*, researchers used the technique, named REANIMATE (REAlistic Numerical Image-based Modelling of biologicAl Tissue substrates) to run detailed computational experiments on high-resolution images of surgically-resected tumours, which allowed them to study the transport of blood, biological fluids and drugs, also their complex interactions with tissue.

Joint lead academic Dr Simon Walker-Samuel (UCL Centre for Advanced Biomedical Imaging) said: “These advances are a truly interdisciplinary effort and would not be possible without the combined input of physicists, mathematicians, cancer biologists, clinicians, imaging specialists and engineers.

“The new framework has a vast potential impact in helping to develop new cancer drugs and potentially providing a cost-effective way to test their efficacy before going to human trials. It advances the move towards truly personalised medicine, with the potential aim that one day clinicians might be able to predetermine the most effective therapeutic plan for each patient’s unique tumour makeup.”

Joint lead academic Dr Rebecca Shipley (Director, UCL Institute of Healthcare Engineering) said: “REANIMATE uses optical imaging of surgically extracted tumour samples to generate virtual models of tumour structure at a microscopic scale. This is the basis for us to perform mathematical modelling, which also integrates quantitative MRI images taken before the tumour was extracted. This is a novel approach that provides an entirely new framework for therapy prediction in tumours and we are now developing ways of applying it to images taken from patient biopsies.”

The research was led by Dr Simon Walker-Samuel and Dr Rebecca Shipley, with UCL Division of Medicine, UCL Mechanical Engineering and UCL Institute for Healthcare Engineering, in close collaboration with colleagues and with the support of the Rosetrees Trust and the Wellcome Trust.

*Published in Nature Biomedical Engineering

Reader comments

Do you like or dislike what you have read? Why not post a comment to tell others / the manufacturer and our Editor what you think. To leave comments please complete the form below. Providing the content is approved, your comment will be on screen in less than 24 hours. Leaving comments on product information and articles can assist with future editorial and article content. Post questions, thoughts or simply whether you like the content.

Post a Comment




Digital Edition

Lab Asia April 2019

April 2019

In This Edition Articles - Mobile Affinity Sorbent Chromatography Of Proteins - Integration of MS and UV Data for Peak Tracking in HPLC Method Development - VMXm takes its First Users 'wher...

View all digital editions

Events

InformEx

Apr 30 2019 Chicago, IL, USA

Making Pharmaceuticals Exhibition & Conference 2019

Apr 30 2019 Ricoh Arena, Coventry, UK

AOCS Annual Meeting & Expo

May 05 2019 St. Louis, MO, USA

ISCC & GCxGC 2019

May 13 2019 Fort Worth, Tx, USA

ISHM 2019

May 14 2019 Oklahoma, USA

View all events